Composition of Essential Oils from the Leaf-margin of Lemon Balm

Mudasir A. Tantry¹*, Gulzar A. Bhat², Bilal Ahmad Wani¹, Bashir A. Ganai¹, Azra N. Kamili¹, Ruqeya Nazir¹ and Abdul S. Shawl³

ABSTRACT

The composite oil samples of leaf-margin of lemon balm ($Melissa\ officinalis\ L.$), on hydro-distillation provided a refreshing white viscous essential oil with characteristic lemon balm smell. The oil was found to be complex mixture of mono- and sesquiterpenes and 50 compounds comprising 98.95 % of the oil were characterized with the help of Gas Chromatography (GC), Gas Chromatography/Mass Spectrometry (GC/MS). Major compounds of the oil were characterized as caryophyllene oxide (12.5 %), β -pinene (11.2 %), γ -terpinene (10.3 %), and terpinene-4-ol (8.7%). This investigation performed on Lemon balm allowed the distinction of first sort of essential oils composition of, as far leaf-margin of Lemon balm is concerned.

Keywords: Lemon balm, leaf-margin, essential oils

INTRODUCTION

Lemon balm (*Melissa officinalis* L.) is an important aromatic plant, a perennial herb cultivated for lemon-scented leaves used as seasoning and in medicine. There are number of reports of literature on the essential oils of Lemon balm (Patora *et al.*, 2003). Mostly the volatile oil, its chemical profile; and its different pharmacological

¹Centre of Research for Development, University of Kashmir Srinagar 190006

²Department of Biochemistry, University of Kashmir Srinagar 190006

³Indian Institute of Integrative Medicine, Sanatnagar Srinagar 190005

^{*}Email: mudaek@gmail.com

activities such as antifungal, antibacterial and spasmolytic properties (Mimica-Dukic *et al.*, 2004; Larrondo *et al.*, 1995; Carnat *et al.*, 1998) are well documented. Thealcoholic extracts of Lemon balm having an antioxidant properties, normally because of high phenolic content such a rosmarinic acid (Mencherini *et al.*, 2007). Biosynthesis of proteins in cancer cells has been reported, by Lemon balm containing substances. Studies on the volatile oils of the balm is extensive but the action on other secondary metabolites is not so much in detail, but as far leaf-margin there is as such no report of essential oils composition of Lemon balm.

MATERIAL AND METHODS

2.1. Plant source

The leaf of Lemon balm was collected from Bonera Field Station (Kashmir Valley) and identified by the taxonomist Dr Anzar Khuroo at Centre for Biodiversity and Taxonomy Biodiversity (CBT), University of Kashmir, Srinagar India.

2.2. Extraction and isolation

The essential oil was obtained by the hydro-distillation of fresh plant material in a Clevenger type apparatus for four hours. The sample afforded white viscous oil with characteristic lemon flavour (yield 0.04%). The oil was dried over anhydrous Na_2SO_4 and was placed at low temperature in refrigerator until analysis.

2.3. GC analysis

The composition of the oil was carried out by GC on a gas chromatograph Perkin Elmer-8500 with Flame Ionization Detector (FID), using a fused-silica column (30 m \times 0.32 mm i.d.; 0.25 μ m film thickness) coated with 5% diphenyl and 95% polysiloxane (BP-5). Oven temperature programmed from 60-220 °C. "Injector temperature, 240 °C"; "detector temperature, 270 °C". Carrier gas nitrogen at 8 psi, split ratio 1:80. Retention indices (RI) of the sample components and authentic compounds were determined on the basis of homologous n-alkanes hydrocarbons under the same

Journal of Research & Development, Vol. 13 (2013) conditions.

2.4. GC/MS

GC/MS data obtained on Varian Mass Spectrometer using VF-5 column (60 m \times 0.32 mm i.d.; 0.25 µm film thickness). Column temperature programmed 5 min. at 60 °C, then rising at 2 and 3 °C upto 240 °C. "Injector temperature, 240 °C"; "ion source temperature, 250 °C", "interface temperature, 270 °C; acquisition mass range 700-40 amu; ionization energy, 70 eV. Helium was used as carrier gas with a flow rate 0.5 ml/min. The identification of peaks was accomplished by comparison of the mass spectra with those reported in the NIST library (Adam, 1989). Identification of the oil components was also done by comparison of their linear RI with those from Mass Finder library.

RESULTS

The composite oil samples of Leaf-margin of Lemon balm (*Melissa officinalis* L.), on hydro-distillation provided a refreshing white viscous essential oil with characteristic lemon balm smell. The oil was found to be complex mixture of mono- and sesquiterpenes and 50 compounds comprising 98.95 % of the oil were characterized with the help of Gas Chromatography (GC), Gas Chromatography/Mass Spectrometry (GC/MS). Major compounds of the oil were characterized as caryophyllene oxide (12.5 %), β -pinene (11.2 %), γ -terpinene (10.3 %), and terpinene-4-ol (8.7%). The composition of the leaf-margin essential oils of Lemon balm (*Melissa officinalis L.*) is tabulated (Table 1).

Table 1. Composition of the leaf-margin essential oils of Lemon balm (Melissa officinalis L.)

L. Composition of the	leai-margin esse	litiai olis oi i	Method
		0.4	of
Constituent	Retention Index	%age	-
			Identification
-Thujene	926	3.4	MS, RI
-Pinene	932	2.1	MS, RI
Camphene	936	0.03	MS, RI
Sabinene	942	2.3	MS, RI
Linalool	947	0.02	MS, RI
-Pinene	984	11.2	MS, RI
Myrcene	1005	0.34	MS, RI
-Phellandrene	1009	1.2	MS, RI
Citronellal	1079	4.8	MS, RI
Citranellol	1087	3.1	MS, RI
-Terpinene	1092	1.0	MS, RI
p-Cymene	1098	0.01	MS, RI
Limonene	1128	0.5	MS, RI
Geraniol	1145	0.05	MS, RI
1,8-Cineole	1151	0.8	MS, RI
(Z)Ocimene	1197	0.7	MS, RI
Neral	1213	0.008	MS, RI
Benzene acetaldehyde	1268	0.001	MS, RI
-Terpinene	1392	10.3	MS, RI
cis-Sabinene hydrate	1415	1.2	MS, RI
Geranic acid	1431	1.3	MS, RI
Linalool	1447	0.04	MS, RI
trans-Sabinene	1461	0.02	MS, RI
h - Odarayteephyllene	1537	3.4	MS, RI
trans-Pinocarveol	1542	0.7	MS, RI
trans-Verbenol	1571	0.006	MS, RI
Geranylacetate	1627	2.03	MS, RI
Pinocarvone	1634	3.7	MS, RI
	1688	0.002	MS, RI
<i>p</i> -Mentha-1,5-dien-8-ol Terpinen-4-ol	1722	8.7	MS, RI
		_	
-Humulene	1743 1779	0.2	MS, RI MS, RI
Myrtenal		0.001	
-Cadinene	1856	0.01	MS, RI
Bornyl acetate	1872	1.3	MS, RI
Thymol	1897	2.5	MS, RI
Humulene oxide	1899	0.002	MS, RI
Carvacrol	1910	0.06	MS, RI
(E)Damascenone	1912	0.05	MS, RI
-Bourbonene	1918	1.2	MS, RI
(E)-Caryophyllene	1951	3.1	MS, RI
-Humulene	1967	0.2	MS, RI
Germacrene D	1989	2.7	MS, RI
Elonone	2021	0.7	MS, RI
Bicyclogermacrene	2053	1.1	MS, RI
transGuaiene	2063	0.07	MS, RI
-Bisabolene	2113	4.9	MS, RI
Caryophyllene oxide	2178	12.5	MS, RI
Caryophyllenol II	2185	1.2	MS, RI
Hexahydrofarnesyl	2191	0.2	MS, RI
avato peoxide	2229	0.002	MS, RI
Total		98.952	

RI = Relative retention indices relative to C9–C23 *n*-alkanes on the BP-5 column. GC-MS identification based on comparison of mass spectra.

REFERENCES

- Adam, R.P. 1989. Identification of Essential Oils by Ion Trap Mass Spectroscopy.

 Academic Press, New York, USA. p 302
- Carnat, A.P., Carna, A., Fraisse, D., and Lamaison, J.L. 1998. The aromatic and polyphenolic composition of Lemon balm (*Melissa officinalis* L.) tea. *Pharm. Acta Helv.*, **72:** 301- 305.
- Larrondo, J.V., Agut, M., and Calvo-Torras, M.A. 1995. Antimicrobial activity of essences from labiates. *Microbios*, **82**: 171-172.
- Mencherini, T., Picerno, P., Scesa, C., and Aquino, R. 2007. Triterpene, antioxidant, and antimicrobial compounds from *Melissa officinalis*. *J. Nat. Prod.*, **70**: 1889-1894.
- Mimica-Dukic, N., Bozin, B., Sokovic, M., and Simin N. 2004. Antimicrobial and antioxidant activities of *Melissa officinalis* L. (Lamiaceae) essential oil. *J. Agric. Food Chem.*, **52**, 2485-2489.
- Patora, J., Majda, T., Gora, J., and Klimek, B. 2003. Variability in the content and composition of essential from Lemon balm (*Melissa officinalis* L.). *Acta Poloniae Pharmaceutica-Drug Research*, **60**: 395-400.